POPPUR爱换

 找回密码
 注册

QQ登录

只需一步,快速开始

手机号码,快捷登录

搜索
查看: 8696|回复: 6
打印 上一主题 下一主题

前级放大器在音频系统中的意义

[复制链接]
跳转到指定楼层
1#
发表于 2005-9-11 17:16 | 显示全部楼层 回帖奖励 |倒序浏览 |阅读模式
前级放大器又称「前置放大器」,通常设定的放大倍率为10倍,故也又称「10倍放大器」,人们简称为「前级」。
! V5 }: a7 q8 d: ]8 h6 Q# h0 ~( G6 c; {" ^6 X: h
是任何器材皆必备的,前级仅使用讯号线输出入,目前市面上的前级采用的输入端子,除了Mark Levinson早期的机型使用Lemo头之外,其的多数是单端的RCA端子,或是平衡的XLR端子。这种三孔插头与数码转换器使用的「AES/EBU」平衡头完全相同,请留意名称上的差异。XLR、平衡头、Canon头指的是插头本身,而「AES/EBU」指的是数字传输的格式;看到前级上XLR头,就说是「我的前级具有AES/EBU插头」,会闹笑话的。一些欧洲器材偶然会使用特制的输出输入端子,Linn、Naim都曾经使用过多孔DIN插头,它们与平衡头一样,具有负端先接地的功能,因此在未关机的情形下,可以直接拔除讯号线而不会发出杂音,使用单端RCA头的用家绝不可贸然一试。! d. R! S  ^8 b5 V
: Q: h% P( O6 X  ~6 B
讯号由输出入端子进入前级之后,利用电路板或隔离讯号线,将讯号引导至切换开关,切换开关负责切换输入的讯源,透过数个切换开关的搭配使用,也可以控制录音输出的讯源种类,方便您一边听音乐,同时录制另一讯源的音乐。讯号经过切换开关之后,再进入左右声道平衡控制电位器,音响使用的平衡电位器为特制的MN型,此种电位器设计特殊,向左边旋转时,左声道的音量维持不变,但右声道则随着角度逐渐衰减,旋钮转至最左边时,右声道恰巧没声音;同理,向右边旋转时,左声道逐渐降低音量,藉此达到控制左右声道音量的目的。正常的使用之下,并不需要调整左右平衡,因此部份前级逐渐省略这项设计,或者将左右平衡电位器隐藏于机箱角落,反正它不常用到。
7 ^% s! [- D4 o8 |4 o9 U8 ?8 X% N0 J7 U/ |8 Y3 R
经过平衡电位器之后,讯号接着进入音量电位器。音量电位器也使用专用的A型电位器,这种电位器依照对数特性制造,使旋钮旋转的角度,可以随着耳朵的感受而线性增加。正常使用的音量电位器,应该转至那个角度才属正常?这没有一定的答案,要看整体器材搭配的总增益而定。音箱效率高、后级增益大者,前级所需负担的放大倍率就得降低,音量开一点点声音就很大了;反之,单增益前级由于放大倍率仅有一倍,因此往往把音量开到底,仍然还有不够大声的缺憾。正常而言,旋钮位置由九点钟方向至十二点钟方向之间皆正常,转动时也最顺手。1 C0 c! n& @+ z- d/ X% W/ y; C
2 t% [$ X! a7 u# o
讯号经过音量电位器之后,便直接进入放大电路。放大电路有繁有简,设计形式不一。放大电路输出之后,有的前级会设计哑音Mute继电器,藉此控制前级讯号的输出与否,经过Mute开关之后则直接连至输出端子。
/ ]; d, R3 D6 j! C/ \! v- |- j  `& K# Y$ S  `! g, [( ]
前级的运作架构就是:输入→讯号切换→左右平衡→音量控制→放大电路→静音开关→输出。# W% N  C% g$ G- @
' s0 d& C& P3 [" V, b( x) h
主动与被动的差异
% B  d* N1 _# B1 B( \8 T! C2 ^7 Q8 h5 G5 k6 f
「主动」(「有源」)的意义在于电路中使用主动组件,主动式前级便是有源前级,是必须插电才能工作的前级。有前级不需要插电的吗?有的,这就是被动式前级。3 b& g! a- J* r) t

4 r; j- G0 P, ^( J从电路架构上分析,被动式前级其实就是省略了「放大电路」过程,讯号输入之后,经过讯号切换开关,进入平衡控制(或者将此功能省略),再使用一个音量电位器控制音量,最后直接输出。就控制音量的角度而言,它仅能衰减而无法放大,就阻抗匹配的功能来说,它也无法扮演缓冲的角色,因此被动式前级是最经济也最直接的前级。First Sound是最有名的被动式前级之一,内部仅由切换开关与音量控制器组成,由于没有任何主动组件,因此S/N比相当高。Jeff Roland的Synergy也是楚楚之典范
, N' O& ?# q4 V" s# ^) |2 ^
; b$ w1 |1 m; w1 D: ]9 y, b! P主动与被动之间各有哪些优缺点呢?。) ?3 g4 H8 ^& B& f8 m

# U2 e* F9 l! l8 S# n. R  K主动式前级具备放大电路,可以将输入的讯号放大后输出,因此增益绝对充足有余;被动式前级除非使用被动式升压器提升输出电压,否则是永远不可能达成放大的任务。就缓冲与阻抗匹配的角度来看,主动式前级由于具有主动组件进行讯号放大,因此可以将阻抗特性较高的讯源,转换为较低阻抗的讯号输出,易于驱动后方的后级线路。这也是被动式前级所望尘莫及的要求。被动式前级充其量只能衰减,在音量全开的情况下,等于讯源直入后级,其中并没有任何缓冲的作用。假如使用升压器将电压放大,放大之后的结果也必须遵照质、能不变的物理原理,而增加了输出阻抗。因此几乎没有任何一部被动式前级愿意使用升压器进行电压放大,顶多使用一颗音量电位器控制音量罢了。
4 K  V* R7 [  j# g  g( `7 c# n; g5 |4 x
/ ]! x: @, E1 k既然被动式前级缺点这么多,为何还有存在的必要呢?; n# T( ~+ ]% m- ~, w! _, t9 _
* X; d; V8 r! w* X4 p0 T: H( Q
因为被动式前级没有放大电路,其讯号通路直接,能够将讯源器材的讯号以最简短的路径直接输出给后级,这就是人们采用被动式前级的初衷。由于不使用主动组件,因此没有任何的失真、音染、噪声、相位飘移等问题,也由于使用机械开关,因此被动式前级也没有增益频宽积的限制,正常设计的被动式前级可以传输数MHz的讯号,尤其是噪声以及S/N比规格两项,几乎没有任何主动式前级可以匹敌。各有优缺点吧!只要该前级适用于您的系统,是没有什么不可以的。
8 R, F' }9 Y7 I( g5 x, H
. K9 `! I6 j+ t' X真空管前级. y- Q: p9 f6 X! W

" e- M# r: \2 y6 R4 A# `3 j依照电子材料发展的历史来看,最早发明的电子组件是真空管,隔了数十年之后半导体发明,半导体之中先以锗晶体问市,之后才是硅组件的天下,等到制造硅晶体团的技术成熟,才有集成电路(IC)的出现。因此前级使用主动组件的过程,是跟随着半导体组件发展的历程而进步的。最早的前级扩大机全部是应用真空管设计,从电源部份开始,变压器输出交流电压后,便以二极管进行管整流以及管稳压的动作,真空管的整流特性与稳压特性并不理想,因此早期的真空管前级声音普遍也不理想,哼声中夹带着嘶声噪音,S/N比不高、频宽也不够,不过对于当时而言,这已经是不错的产品了!; z# T0 O' }& ^/ F  G% C
& w5 F7 T" a* o& ?9 `  B* h; x
电子组件不断进步,扩大机的电路水平也逐步提升,半导体发明之后,以半导体取代部份真空管,效率不高、功能不佳的真空管整流与管稳压,逐渐被半导体组件所取代。体积小、动作稳定的半导体,制造出了稳定的电源,前级扩大机的性能也提升不少,背景噪音大幅度降低,S/N比马上提高不少,哼声消失了,聆听音乐开始进入更高级的享受。( p2 |- h, b! v5 _7 y8 n$ i0 j
4 _7 k8 l: \2 y% e% Y
至目前为止,大部份的真空管扩大机仍然以半导体稳压为主。其实对于声音而言,真空管确实是无可取代的好组件,它的体积虽大,但却有其独特且无法取代的音色,温暖、醇厚,都是管机常见的特色。坚持使用真空管放大的Audio Research以及Sonic Frontiers,两家的前级几乎全为真空管设计,但不可否认的是,它们设计师仍然偏好使用半导体进行整流与稳压的工作。真空管的电路架构,早在二十年前就已经发展完成,差动、串迭、推挽、倒相,无一不在早期的真空管前级中出现。使用相同的组件要达到相同的目标,方法不外乎是那几样,因此对于现代的真空管设计者而言,电路的创新反而不再是追求的目标,为真空管线路提供一个稳定、干净的电源,搭配质量优秀的被动材料,便能让真空管好好的工作。最后,再藉由零件的搭配,进行调整声音的工作。
3 h) q% ?, B  e2 H
; X) G) ]8 q4 E- w. D有的真空管前级线路很复杂,有的仅使用一支真空管,这其中有什么差别?难道管子越得越多声音就一定越好吗?这答案当然不一定,目前前级当中真空管使用最多的可能是Sonic Frontiers Line 3,它是Sonic Frontiers最高级的前级,一口气用了12支真空管;而也有不少真空管前级,仅使用一支双三极管进行放大,如Audio Research LS-2。前级使用数量的多寡当然不能表示声音一定好,严谨的态度进行规画与设计,否则真空管的音染、失真等问题,还没开声就已经难以收拾了。设计者进行高级器材的规划时,必然考虑到线路架构与其价格的等级分布,即使以相同的理念设计出不同等级的产品,价位高的声音必然要胜过旗下机种。真空管使用多寡与声音没有绝对的关系,设计者不过将器材设计得更完整严谨,以赢取消费者的信赖罢了。
2 k1 F+ D' w1 @& I" N# R+ `
2 Q2 B( T+ I/ ^真空管前级的巅峰之作,多年前Audio Research的SP-11以及最近热门的Sonic Frontiers Line 3。Sonic Frontiers喜欢使用精密的半导体稳压,配合真空管放大,声音兼具晶体机的透明度与管机的厚度。8 n0 v9 I1 \' d+ c8 [+ Z4 x
6 U" |# i0 z# X7 v+ h7 _( x( V8 e
混血真空管前级/ S7 T2 Z6 g/ K+ `; w
  i0 A9 w( y; H) W
混血前级曾经流行过一阵子,最早Luxman推出了以真空管及晶体管电路的Hybrid线路。混血前级的发展,主要目的在于截长补短,将半导体以及真空管的优点结合在一起,所形成的号召设计。
7 f0 h1 ^2 v0 E6 d, m& o' G& i( S1 D% G) X- ^5 G
当半导体组件成熟的运用于音响电路中时,真空管似乎一下子失去了原有的地位,没有人对于体积庞大的真空管提起兴趣,音响器材不断标榜着全半导体、全晶体管的设计。但早期的半导体在制造以及线路的构成上,很难避免的会让声音变硬、变冷、甚至于变吵。于是开始有音响迷回头重新寻找管味,原来,音响迷需要的不仅仅是优异的特性,更重要的是回放声音的音乐性。- e5 h, g9 z' R# D1 J+ L# H( I
2 B7 G! h1 k; a2 l# N8 j; M3 G
真空管比较有音乐性吗?- k( \5 U( O# o; H

- {+ S7 a$ X+ {8 }+ p5 N这当然无法论定,但对于当时而言确是不争的事实。Luxman率先把真空管摆入晶体管线路当中,让真空管负责一级的放大,藉由真空管的独特音色,「感化」晶体管的声音。Audio Research在推出了半导体前级不获好评之后,也重新回头检讨真空管受欢迎的原因。声音,其实才是音响迷注重的焦点;技术,不过是附属的噱头罢了。! I+ y- z7 o$ I! `
. z. G# S) ?! s3 S
Audio Research想到,FET与真空管同属于高输入阻抗组件,但FET却拥有真空管难以企及的频宽,但早期的FET声音偏冷,而真空管却洋溢着温暖的气息,何不将两者的长处融合,于是Audio Research使用FET输入,在输出段加入一支6922真空管,这就是脍炙人口的LS-2胆石混血前级。
5 r4 F% b5 ~; E) y$ }6 b% F5 i/ Y6 V% p4 P( f
LS-2的成功推出,确实为混血前级设计开出一条成功的道路,目前市面上仍有许多混血前级,它们同时拥有高频宽的特性,S/N比与晶体机无异,用家还能自行换管调声,反正只要声音好,殊途也同归。$ f# Y; g3 y' q) c* Y9 W. ]7 G
* h. U3 U( l- w# ~; E. A9 o2 S  R
Audio Research喜欢使用半导体与真空管的混血设计,打开内部之后可以发现真空管与晶体管、IC供列于电路板上。
7 c1 ?. f. T' C; M9 g- I; ?. x' \' p4 i% E% g; h9 l4 C
晶体管前级6 Q- b1 P4 g+ u' n

0 A6 J. Y* J$ b  i晶体管前级当然不限于场效应晶体管(FET)或双极性晶体管(BJT),晶体管的发展就是为了更好的规格而来的,因此当晶体管制造技术逐渐成熟时,音响的用料也朝向全晶体管的方向发展。晶体管与真空管的线路架构虽然类似,但却大不相同。晶体管体积小,可以在有限空间的电路板中大量使用,因此可以将线路设计得更严谨、更精密,不同的晶体管拥有不同的特性,适度的搭配便可以创造极佳的效果。
+ O9 G0 h' W4 b8 H* ?
* `7 M$ E$ t" Y# A# B晶体管线路的发展仍然来自于真空管架构,差动是最长使用的放大方式,单差动、双差动、电流源、达灵顿、串迭等等电路技巧,可以依照设计者的喜好像拼图一般逐步建构,最简单的晶体管放大电路为单端放大,以一颗或以两颗晶体管直接放大;也可以利用复杂的架构,缜密且严谨的盖出高塔。Mark Levinson、Cello Encore、Palette以及Krell、Thershold等公司,是最喜好使用大量晶体管制造器材的公司。他们使用晶体管有几个特色:6 @, a- l; v" _; f5 c+ P& ]

5 l! `! W  w& R3 F- O5 a/ p一、数量其多无比,可以使用两颗的绝对不会以一颗解决。
- j/ U+ y/ S0 }+ @二、偏好双极性晶体管,虽然在特性上FET拥有较佳的性能,但也许是习惯加上喜好,一部前级从头到尾几乎全是双极性晶体管。+ ~) w) e- K+ `' k& b+ u6 A
三、对于电源供应相当讲究,以晶体管为主的稳压线路,其实就可以达到相当优秀的性能,使用低杂音零件所制造出来的直流电源,杂音特性足以与电池相比。但完美之外还要更完美,Mark Levinson、Cello等设计师,嗜好以多层次稳压,电源从变压器输出之后,以二极管整流,再以电容进行稳压,好戏从这里才开始,利用精密的晶体管稳压电路,稳压之后再稳压,一连两三次的串联稳压,让电源涟波完全没有发生的机会。
/ D; D7 d* ?! S. _: U9 v" I3 c
7 ]" i- [' o4 V近代这几家嗜好以晶体管设计前级扩大机的厂家,也开始尝试加入FET以及IC的设计,电路架构依旧复杂无比,但声音却拥有极高度的透明感与分辨率,细节多到吓人的地步,却不见古早晶体管生涩的表情。可见,空凭电路架构与材料种类,并无法推断其声音的绝对表现,过去总有人说:FET的声音较清亮,MOSFET的声音具有真空管味,晶体管生涩没弹性,现在这些说法已经完全不正确了。
6 c( I6 w0 n4 b( f
' {, {* V- z1 M6 R$ B, kMark Levinson、Krell以及Cello等厂商,酷爱使用大量晶体管堆砌线路,打开机箱一看,尽是满满的电阻与晶体管。
4 ~' ?5 G6 k) x# a
$ a0 S! t! Z4 k8 U& [. @(日,一万字)
2#
 楼主| 发表于 2005-9-11 17:16 | 显示全部楼层
IC前级
8 l. N" f8 y3 S8 B5 ]- z$ p" l3 U0 }; [% x
有人说6DJ8是为音响而设计的真空管,那么NE5534应该就是第一颗专为音响而设计的IC。1981年对IC设计而言,尚不到发达的年代,Philips的子公司推出了NE5534 IC,宣称特别为音响用途而设计,特点是采用双极性晶体差动输入,低阻抗输出,适合在前级线路中使用。NE5534是一颗运算放大器OPAMP,它将放大器线路浓缩于一颗八支脚的IC内,只要附加几颗电阻以及防止震荡的电容,就可以构成前级放大器中所需要的放大电路。消息一出确实轰动业界,原本要使用不算少量零件构成的放大电路,竟然可以使用一颗IC取代,不禁让设计师看了傻眼。不过当时大家普遍不相信IC的声音,总认为它的特性甚差,声音不理想,因此并没有人愿意真正拿OPAMP来做前级的主要放大组件,除了MBL 6010之外。: Z- A/ n) W" v7 L2 }. D
: H- v3 S, I. y; b5 Y8 I
早期的OPAMP特性确实相当不理想,它的回转率低,杂音特性不佳,还得依照不同的电路给予不同程度的补偿修正。但现代的IC性能可不能同日语,现代专为音响而设计的OPAMP,具有如FET及真空管高输入阻抗的优点(具有数M奥姆的输入阻抗,其实比FET还高),同时也有BJT低输出阻抗的优点(可以降至数十奥姆,也比小信号晶体管还低),它的回转率高达数千V / μs,输出中点电压低不可测。不必加装交连电容也可以直入后级,它的频宽更是惊人,直接拿来放大射频讯号也没问题,价格低廉特性超强,早已经成为音响设计必备的放大组件。7 t! \4 G+ {  A! K
5 x* k3 a9 r( t0 h7 }* ]+ \
虽然现代的OPAMP特性极佳,但体积却依旧小巧,设计师认为如果一部前级内仅以几颗OP构成,卖得了大钱吗?因此IC前级的发展不在于声音,而是有没有办法卖高价钱。这世界上肯定没有任何前级比MBL 6010更幸运的了,一部前级仅使用十来颗NE5534 OPAMP,身价却高达六十余万元,德国人确实有一套。
* M' B2 f. F& k# Q; c* B
# ?" T- I! a9 G! ]MBL 6010与McIntosh C100皆以NE 5534做为主要放大组件,所不同的是,mbl 6010的线路相当简洁,而McIntosh C100则使用大量OPAMP盖成一部两层楼的作品。/ |8 k7 ^; `" ?. @9 p% t* U; b) s/ S
4 H0 G( ]$ T5 w
数位前级5 Y9 T* @6 d/ ^3 Z& u7 e* M
# N6 d# B9 E1 o& e4 a% j9 M
这是前级发展的新趋势,但碍于技术的研发并不容易,因此能够设计数字前级的厂家并不多。数字前级意味着控制与放大皆采用数字的方式进行,以前级的功能来说的确不必如此麻烦复杂,但尝新总是发展的原动力。数字前级如何工作?模拟讯号输入前级之后,利用内部的A / D转换,将模拟讯号转成数字讯号,再依据音量控制器的大小数据,以DSP进行运算,再以数类转换器的技术将计算之后的数字数据转成模拟讯号,再输出至后级扩大机。如此兜一圈是不是很浪费力气?但Accuphase认为,他们推出DC-300的用意在于宣告,模拟前级他们拥有高完成度的C-290V,为了因应数字时代的来临,推出复杂处理程序的数字前级正是迈入下一个挑战的开始。3 D# R$ e  R" c

# J: {. O- x* a5 Y" L% z% J& V就两声道的世界而言,数字前级的确多此一举,但Accuphase其实已经见到了未来。多声道的流行是不可避免的趋势,多声道等于环绕系统,从讯源的解读开始,就必须仰赖高度计算的数字技术,现今每一部环绕处理器必须使用数字化设计,利用数字技术解出每个声道的讯号之后,再利用模拟的方式进行放大。何不尝试直接以全数字化处理,将译码后的声音数据直接转换为输出,而省略了前级放大的部份?如此即可达到更直接的效果,对于音质的提升应该有实质的帮助。
/ {- T" E6 C8 ]. I! r- J
* e! f5 l8 v; }4 O其实数字前级的概念早在多年前就已经出现了,只不过这些数字前级存在于数类转换器之中。Vimak DS-2000应该是第一部融合数字前级的数类转换器,我们暂且不谈论这部数类转换器的种种设计,光就内部附属的数字前级进行解说。Vimak DS-2000的数位前级是这样的:在DS-2000内部拥有一个高位的DSP运算器,将CD数据以128倍超取样之后,再依据面板上的数字音量控制器,直接改写数字数据,进而决定DAC芯片的输出。换句话说,DS-2000的讯号输出正是DAC芯片的直接输出,而非经过音量电位器的衰减,它提供了最简洁路径的设计,也提供了最直接的音质。当然,Vimak的设计者来头可不小,这些数字技术对他来说并不困难,音响世界缺乏了Vimak,让很多数字厂家松了不少口气!
# C& B5 Z! O( \
& V& j) ^0 ~, S/ C1 m! \最出名的数位前级是Accuphase DC-300。
+ e6 |& y& [# j: v! k% Y7 f" S$ b2 W) @
单增益前级
* H+ s9 I# D) @, D
& r9 [0 C7 y, F: P" y8 R一开头提到,主动式扩大机内部具有放大电路,一般的增益为0至十倍,而被动式前级使用音量电位器衰减,其最大输出即等于输入。也有一种主动式前级,其放大倍率与被动式前级一样,这就是单增益前级。
! e2 u7 A7 t) E% h; p# o
6 W+ ?. I1 d- m2 B2 N7 v单增益前级的目的在于:将前级想象成一个缓冲器(Buffer),在英文意义里,Buffer具有隔离、缓冲的作用,亦即不改变讯源器材的信号强度,但以高输入阻抗接收,以低阻抗输出的观念将讯号送出,因此单增益前级便具有阻抗转换的功能。市面上的单增益前级并不多,最主要原因在于增益往往不足,音量开至最大依旧意犹未尽,国产厂商交直流工作室推出的Encore前级,正是单增益前级的具体代表。这部前级使用孪生场效应晶体管做输入,以ZTX双极性晶体管做输出,具有高输入阻抗、低输出阻抗的特性,由于零件极少,因此S/N比奇高,将音量开至最大,耳朵贴近高音单体听不到任何嘶声,音色通透无染,细节呈现自然,是一部价格极其便宜音质极其优异的单增益前级。
% C4 Y' s+ _4 z/ K2 }  s9 p! e4 B3 M/ d) H& a7 B- E- Y
简单来说,在音响系统里,前级放大器所发挥的功能并不复杂,它只是负责切换讯源、处理讯号与控制音量,这就是音乐信息在进入后级前的最后一道处理程序。它的连接位置,介于讯源器材与后级放大器之间,故前级放大器所扮演的角色——负责将讯号整理与调整。
2 x5 x5 d9 X! Y( ]. Z& w( c5 L
3 _8 x9 y/ _, m. @* \. U- m
# V% N  _, D* n, l6 K以上为转帖。( ~, c" h  r) @, Y; g- ]" v% f
---------------------------& G) k" ?5 n7 Q5 {
个人感觉前级最大的影响在于音场、细节、人声的厚度、通透感、定位等等方面,声音的好坏在前级更换和打磨前后有太明显的不同。在PC音频输出上,如果没有前级而直接接后级,效果会逊色很多。当然也不排除声卡本身运放电路质量优异,没有使用前级的必要~~ :charles:
回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

广告投放或合作|网站地图|处罚通告|

GMT+8, 2024-5-16 05:48

Powered by Discuz! X3.4

© 2001-2017 POPPUR.

快速回复 返回顶部 返回列表