也许不少的网友都会在此刻提问,我们这么极力的宣扬45nm产品是为什么?他们有着怎么样的过人之处值得我们如此期待?
Yorkfield内核四核心Core 2 Extreme QX9650 在2007年11月,Intel发布了四核心Core 2 Extreme QX9650处理器,由此而踏上了45nm的征程。在产品发布之后,多方媒体的评测及玩家们使用后的感受都对Intel这具有业界突破性的45nm技术赞不绝口。更为优异的性能及超频能力令玩家们更多的感受到了极致快感。同时,在功耗测试当中,45nm技术所带来的突破也令人欣喜。
Intel公司45纳米硅晶片效果图 与此同时,45nm技术在令单位面积的晶片上集成了更多晶体管而拥有了更强的性能的同时,也大幅度的降低了生产成本,令产品拥有了更为低廉的价格,消费者也因此而享受到了更具性价比的处理器。 可见,处理器产品每一次制程的转换都为玩家们带来了更多的体验感受,产品方面不仅仅功耗得到了进一步降低、性能也同时得到了极大的提升,频率和超频性能也都有了进一步的增强。因此,选择45nm处理器产品无疑要更具性价比,也是未来主流的发展趋势。 目前,Intel及AMD都有着采用45nm的产品。然而同为45nm,它们的生产工艺却截然不同,有些什么区别?让我们接着看下来。
[img=1,1]http://ad.cn.doubleclick.net/ad/N5751.138759.7505627606321/B3489206.15;sz=1x1;ord=[unique-string]?[/img] [img=1,1]http://ad.cn.doubleclick.net/ad/N5751.138759.7505627606321/B3489206.15;sz=1x1;ord=[unique-string]?[/img]● Intel —— 突破式的45nm (关键字:High-k + Metal Gate介质引入) 2007年,Intel正式发布了四核心Core 2 Extreme QX9650处理器,由此引领行业抢先来到了45nm的新世界。Intel的45nm采用了突破式的新材料,为晶体管发展四十年来之最大进步。
在过往四十余年的时间中,业内均普遍采用二氧化硅做为制造晶体管栅介质的材料。而在65纳米制程工艺下,Intel公司已经将晶体管二氧化硅栅介质的厚度压缩至1.2纳米,基本上达到了这种传统材料的极限。此时不但使得晶体管在效能增益以及制程提升等方面遭遇瓶颈,过薄的晶体管二氧化硅栅介质亦使得其阻隔上层栅极电流泄漏的能力逐渐降低,漏电率大幅攀升。
45纳米新型High-k + Metal Gate介质与传统材料之比较 为了使上述情况得到解决,Intel公司于45纳米Penryn家族处理器中首度引入High-k技术。此种以hafnium铬元素为基础物质的新型材料不但拥有良好的绝缘性,且比传统二氧化硅栅介质更为厚实,能够进一步控制晶体管的漏电率。当然,由于High-k晶体管栅介质与现有晶体管栅极并不兼容,因此Intel公司亦同时拿出新型晶体管栅极材料,使得晶体管内部源极到漏极之间的驱动电流增加20%以上,不仅能够有效提升晶体管效能,亦能够使得晶体管内部源极到漏极之间的漏电率降低5倍左右。
Intel公司45纳米High-k + Metal Gate介质示意图 High-k栅介质与Metal Gate栅极的引入能够使得晶体管漏电率较之传统材料降低10倍以上,与65nm制程工艺相比能够在相同耗能下提升20%的时钟频率亦或是在相同时钟频率下拥有更低的耗能。45纳米晶片每秒钟能够进行约三千亿次的开关动作,在以铜与low-k材料搭配组成的内部连接线的作用下,晶片开关速度能够提升20%且耗电量降低30%。
值得一提的是,在于用于连接硅晶片与基板的内部连接点第一层内5%左右的焊锡中,Intel公司以锡、银、铜的合金取代现有铅、锡为主的焊锡,并宣布于45纳米High-k + Metal Gate产品中全面采用100%无铅工艺制造,对于拥有复杂硅晶片连接结构的处理器技术而言,替换其连接材料绝非易事,Intel公司为此耗费了大量的精力,但其意义无疑是相当深远的。
|