|
Performance in ApplicationsI have to say that the general and gaming performance of the new desktop Bulldozer turned out lower than we expected. However, we are not giving up and are ready to look for situations where new AMD microarchitecture will really shine.
To test the processors performance during data archiving we resort to WinRAR archiving utility. Using maximum compression rate we archive a folder with multiple files 1.4 GB in total size.
![]()
FX-8150 performance turns out close to that of Core i5-2500. WinRAR is not one of those applications that can split the load into eight parallel threads for all eight Bulldozer cores, but gigantic cache-memory seems to be saving the situation here.
The second similar test of the archiving speed is performed in 7-zip that uses LZMA2 compression algorithm.
![]()
FX-8150 does really great in 7-zip. This eight-core processor gets very close to the quad-core Core i7-2600 with enabled Hyper-Threading, which can also execute eight threads at the same time, just like the new Bulldozer.
The processor performance during encryption is measured with an integrated benchmark from a popular cryptographic utility called TrueCrypt. I have to say that it can not only effectively utilize any number of processor cores, but also supports special AES instructions.
![]()
Well-paralleled simple integer algorithms are exactly what Bulldozer microarchitecture needs. As we can see, the performance may be pretty impressive in this case. Namely, the only processor FX-8150 couldn’t outperform was the six-core Core i7-990X. As for all LGA1155 processors, our hero was way ahead all of them.
We use Apple iTunes utility to test audio transcoding speed. It transcodes the contents of a CD disk into AAC format. Note that the typical peculiarity of this utility is its ability to utilize only a pair of processor cores.
![]()
Applications generating few computational threads are not a good match for Bulldozer. Individual cores of this processor are too weak to perform well here.
We measured the performance in Adobe Photoshop using our own benchmark made from Retouch Artists Photoshop Speed Test that has been creatively modified. It includes typical editing of four 10-megapixel images from a digital photo camera.
![]()
In Photoshop FX-8150 doesn’t perform as poorly as K10 based processors, but it is still unable to catch up with Core i5-2500. In this case large cache memory helps Bulldozer microarchitecture a lot, but it is not enough to guarantee victory. The efficiency and specific performance of the computational cores are still the primary factor.
We have also performed some tests in Adobe Photoshop Lightroom 3 program. The test scenario includes post-processing and export into JPEG format of a hundred 12-megapixel images in RAW format.
![]()
Lightroom is capable of splitting the photo processing between any number of cores that is why eight-core FX-8150 does pretty well here. Although I have to admit that “pretty well” could be considered a very relative term in this case, as its performance is only comparable with that of the Core i5-2500. And therefore it means that two Bulldozer cores are equivalent to one Sandy Bridge core without Hyper-Threading.
|
|